EVALUATION OF LARGE-SCALE OPTIMIZATION PROBLEMS ON
VECTOR AND PARALLEL ARCHITECTURES"

BRETT M. AVERICK! AND JORGE J. MORE!}

Abstract. We examine the importance of problem formulation for the solution of large-scale
optimization problems on high-performance architectures. We use limited memory variable metric
methods to illustrate performance issues. We show that the performance of these algorithms is dras-
tically affected by application implementation. Model applications are drawn from the MINPACK-2
test problem collection, with numerical results from a super-scalar architecture (IBM RS6000/370),
a vector architecture (CRAY-2), and a massively parallel architecture (Intel DELTA).

Key words. optimization, large-scale, limited memory, variable metric, performance evaluation,
vector architecture, parallel architecture.

AMS subject classifications. 65Y05, 65Y20, 65K05, 65K10, 90C06, 90C30

1. Introduction. Our aim is to explore performance issues associated with the
solution of large-scale optimization problems on high-performance architectures. The
solution of these problems, where the number of variables ranges between 10* and 105,
requires computer architectures with fast processors and large memories. We consider
three architectures with these features: the IBM RS6000/370 workstation with 16 MW
of memory is representative of a super-scalar architecture, the CRAY-2 with 512 MW
of memory is representative of vector architectures, and the Intel DELTA (512 mesh-
connected i860 processors) with a combined memory of 1024 MW is representative of
massively parallel architectures.

We examine the importance of problem formulation for model applications drawn
from the MINPACK-2 test problem collection. This collection is representative of
large-scale optimization problems arising from applications in elasticity, combustion,
lubrication, optimal design, superconductivity, and other fields of interest. Additional
information on the MINPACK-2 problems can be found in Averick et al. [1].

Performance issues are illustrated with limited memory variable metric algo-
rithms. These methods require minimal storage, lend themselves naturally to vector
and parallel implementations, and work well on a wide range of optimization prob-
lems. See, for example, the comparisons of Nash and Nocedal [17], and Zou et al. [20].
Our implementation of a limited memory variable metric algorithm, VMLM, follows
the approach of Liu and Nocedal [12]. In Section 3 we describe the key features of this
code and its performance on the model applications of Section 2. The most noticeable
aspect of these results is that on all the architectures under consideration, the cost of
evaluating functions and gradients dominates the overall solution time. The obvious
consequence of this observation is that improvements in performance can be obtained
only if the implementation of function and gradient evaluations takes advantage of
the architecture.

*

t Cooper Neff Technologies, 3 Radnor Corporate Center, Suite 131, Radnor, Pennsylvania, 19087.
This work was supported by the Center for Research on Parallel Computation under NSF Cooperative
Agreement No. CCR-8809615, and by the Army Research Office contract number DAALO3-89-C-
0038 with the University of Minnesota Army High Performance Computing Research Center.

{ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois,
60439. Work supported by the Office of Scientific Computing, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

2 B. M. AVERICK AND J. J. MORE

Vectorization issues are treated in Sections 4 and 5. We show that vectorization
of the function and gradient evaluation for our applications requires an appropriate
partitioning of the element functions. These partitioning techniques are of interest
because they are applicable to any partially separable function. In our applications
they improve computing times by at least a factor of 10.

Sections 6 and 7 are concerned with distributed memory architectures. Section 6
shows that it is possible to develop algorithms for the function and gradient eval-
uation that are scalable in the sense that as the number of variables increases and
the number of processors increases, the computing time remains reasonably constant.
Section 7 shows that the implementation of the VMLM code is scalable in terms of
the computing time per iteration. In Section 7 we also compare the performance of
the VMLM code on all three architectures by determining when the DELTA is faster
than the other two machines.

Performance evaluations of limited memory codes have also been performed by
Nocedal [18] and Maier [13]. The issues brought out in these studies differ, in par-
ticular, because Nocedal deals only with shared memory architectures, while Maier’s
evaluation on the SIMD architecture of the CM-200 does not address scalability issues.

We end the paper by discussing possible extensions of this work. In particular,
we point out that the performance issues that we have raised are also applicable to
truncated Newton methods because for these methods the cost of evaluating functions
and gradients 1s likely to dominate the computing time.

2. Large-Scale Optimization Problems. The optimization problems that we
consider arise from the need to minimize a function f of the form

f(v):/DCI)(x,v,Vv)dx,

where D is some domain in IR?, and & is defined by the application. In all cases f is
well defined if v : D — IR? belongs to H(D), the Hilbert space of functions such that
v and ||Vo|| belong to L?(D). This is the proper setting for examining existence and
uniqueness questions for the infinite-dimensional problem.

Finite element approximations to these problems are obtained by minimizing f
over the space of piecewise linear functions v with values v; ; at z;;, 0 <¢ < ny + 1,
0 <j<ng+1, where z;; € IR? are the vertices of a triangulation of D with grid
spacings h, and hy. The vertices z; ; are chosen to be a regular lattice so that there
are n, and n, interior grid points in the coordinate directions, respectively.

Lower triangular elements 77, are defined by vertices z; ;, 2i41 , 2 j4+1, While upper
triangular elements Ty are defined by vertices z; ;, 2,15, % ,;—1. The values v; ; are
obtained by solving the minimization problem

min{Z(fj(v)+ Z[{](v)) ‘v E]R”}a

where Z»LJ» and fg] are the finite element approximation to the integrals in the elements
Tt and Ty, respectively.

Our problems are taken from the collection described in Averick et al. [1]. This
report contains additional information on these problems; in particular, parameter
values are chosen as in this report.

Steady State Combustion (SSC). The study of the steady state in solid fuel
ignition models leads to the optimization problem

min{ fr(v) : v € Hy (D)},

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 3

where fy : H}(D) — IR is the functional

/{2||Vv ||2 Aexplv }dx

and A > 0 1s a parameter. The finite element approximation is defined by

L hhy

= Mt (o)}, L) = {57 5(v) = Anz;(0)}

2 2
+ _ (Vi1 T Ui Vij+1 — Yij
di,j(v) - (hx + hy)

i = 5 {exp(vij) + exp(viz1 ;) + exp(vij+1)} -

where

We use A = 2 for our numerical experiments.

Minimal Surface Area (MSA). The determination of the surface with minimal
area and given boundary values in a convex domain D is an optimization problem of
the form

min{f(v) : v € K},

where f: K — IR is the functional

fo) = [+ I9u@l)
D
and the set K 1s defined by
K = {v € Hl(D) cv(e) = vp(x) for x € 87)}

for some boundary data function vp : 9D +— IR. We consider the Enneper minimal

surface defined on P = (-1, 1) x (_5’ 1) by

vp(€1,&2) = v’ — 0%,
where u and v are the unique solutions to the equations
3

1 1
flzu—i—uvz—gu?’, fzz—v—uzv—l—gv

The finite element approximation is defined by

hh

Ml (a0} 5w =t)

2 2
Vit1,j — Vi) Vij+1 — Vij
dx. — J J J J
i (V) (W + ™

Optimal Design with Composites (ODC). The optimal design problem re-
quires determining the placement of two elastic materials in the cross-section of a rod

z'L,j(U)

where

4 B. M. AVERICK AND J. J. MORE

so as to maximize the resulting torsional rigidity. The problem is formulated in terms
of a family of problems of the form

min{fy(x) v € HA(D)},
where fy : H}(D) — IR is the functional

£y = [{9 et + o)} do

and ¥ : IR — IR is the piecewise quadratic

That?, 0<t<t,
UA(t) = pata(t — 3t1), t <t <ty
Spa (2 —13) + pot1(tz — 3t1), ty <t

with the breakpoints ¢; and ¢5 defined by

1 1
2 2
t = (2/\&) , ity = (2/\&) .
M2 H

We consider the problem of minimizing f) for a fixed value of A = 0.008. In our
numerical results we used gy = 1 and gy = 2 so that t7 = X, t2 = 2X. The finite
element approximation is defined by

hih 1
50 = 22 (o (e 00) + 50+ v + i)

hph _ 1
fz'[,]j(v) =3 . [1/& (ei;(0) + g(vm' +vi_1;+ Ui,j—l):| :

1/2
eE.(v) = Vitlj = Vi ? 4 (Vi Vi ?
CANA he hy '

3. Limited memory variable metric algorithms. Given an initial iterate g,
variable metric methods generate iterates by

where

Tpy1 = 2 — o Hy V f(2y),

where ap > 0 1s determined by a line search algorithm, and the matrix Hy is deter-
mined by an updating procedure. In a limited memory method the matrix Hy, is not
stored explicitly; instead, it 1s defined implicitly in terms of a fixed number of vectors.

In our implementation of the limited memory method, the search parameter oy, 1s
determined by the csrch subroutine of Moré and Thuente [15]. The matrix Hp4q is
defined, as in Liu and Nocedal [12], in terms of a scaling parameter o, and information
gathered during the previous m iterations. Given

yi = Vi(wi) = Vi), sj=zjp—x, pi=y s, k-m+1<j<k,

the product ¢ = Hy 1w for any w € R" is computed with the pseudo-code

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 5

g —w
do i = min(k, m),...,1

| — i+ max(0, k —m)

B — (sfa)/m

q—q— Gy
end do
q — oq
doi=1,...,min(k, m)

| — i+ max(0, k —m)

g —q+s (8 — (Wl 9)/m)
end do

For most applications, the computational cost of limited memory algorithms is
dominated by the cost of evaluating f(x) and V f(z), where we measure cost in
terms of floating-point operations, or flops. In addition, our limited memory variable
metric algorithm, VMLM, costs (8m + 1)n flops for the computation of H;V f(zy),
and 11n flops for the remainder of the algorithm. Memory requirements are (2m+3)n
words of storage.

Table 3.1 shows timing results (in seconds) for the solution of the test problems
of Section 2 by VMLM with m = 5. The most striking feature of these results is the
fraction of computing time required for the function evaluations. On one node of the
DELTA the function evaluations require 75% of the solution time, on the CRAY-2
the function evaluations are responsible for over 90% of the overall solution time, and
on the IBM RS6000 the functions require about 60% of the solution time. We obtain
different ratios because the relative cost (in terms of flops) of evaluating the functions
differ drastically from machine to machine. We shall address this point in Section 5.
Another reason for the difference in ratios on the CRAY-2 is that the VMLM code
vectorizes while the function evaluation code does not.

TaBLE 3.1
Initial timings (seconds) for n = 40,000

DELTA (1 node) CRAY-2 IBM RS6000/370
| Problem | function | algorithm | function | algorithm | function | algorithm
MSA 484 641 125 134 74 132
SSC 307 384 132 136 62 91
ODC 510 636 109 116 66 112

It is worthwhile noting that for our problems the number of VMLM iterations
tends to grow like n'/2. This can be seen clearly in Figure 3.1, where we have plotted
the number of iterations against n'/? for all three test problems. We also note that
the linear dependence on n'/? for the number of iterations seems to be typical of
two-dimensional grid problems. Another interesting observation on these problems,
i1s that in most cases the line search only requires one function evaluation, with the
ratio of function evaluations to number of iterations always less than 1.05.

As a consequence of the above remarks, the time to solve grid problems with
VMLM grows like n/2 on serial architectures. However, for parallel architectures
our aim is to avoid the growth in time resulting from increasing problem size, by
increasing the number of processors. By developing a scalable (constant time per
iteration) algorithm, the time to solve grid problems with VMLM grows like nt/2,

In the remainder of the paper we look at several ways to improve the overall
solution time of VMLM. Table 3.1 shows that in order to do this we must concentrate

6 B. M. AVERICK AND J. J. MORE

2500

2000

-
15
o
S

1000

Iterations of LMVM

500

0 | | | | | |
50 100 150 200 250 300 350 400
Square root of the number of variables

Fia. 3.1. Number of iterations of VMLM on grid problems as a function of nt/?

on improving the function and gradient evaluations.

4. Evaluating functions and gradients on vector architectures. The re-
sults of Section 3 clearly show that improving the performance of the VMLM code on
the CRAY-2 requires vectorization of the function and gradient evaluations. In this
section we show that this can be done by using partitioning techniques.

The standard way to evaluate the functions and gradients for the optimization
problems discussed in Section 2 is to first sweep through the triangular elements with
the pseudo-code

doj=1,...,ny
doi=1,...,n;
Evaluate fZLJ(v) and V fj(v)
F0) — F() + £ (0)
V(o) — V() £V ()
end do
end do

followed by similar code for the triangular elements 7. This code does not vectorize
and thus performs poorly on the CRAY-2. The difficulty arises because functions Z»LJ»
and fiL-|-1,j share the variables v;41 ; and thus both contribute to the same gradient
element. More specifically, a vector dependency occurs because several elements try
to write into the same component of the gradient.

The vector dependency can be eliminated by splitting the functions into groups
such that no functions in a group depend on the same variable. This idea was sug-
gested by Moré [14] for treating synchronization issues on shared memory architec-
tures, but can easily be extended to vector architectures.

The partition problem of splitting the functions Z»LJ» into groups so that functions
in a group do not have variables in common is equivalent to partitioning the triangles
T, into groups so that triangles in a group do not intersect. For our test problems; if

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 7

Sl Sl

Sh S S1

Sl Sl

Sl Sl

Sh S S1

Fia. 4.1. Triangular elements Ty, in S

then the three sets
S ={(j)e s i
SQI{(i,j)ESZi
532{(i,j)651i

mod(j,3)+ 3k, k=0,1,...},
mod(j +1,3) + 3k, k=0,1,...},
mod(j +2,3) + 3k, k=0,1,...},

define a suitable partition. For example, the triangular elements Ty associated with
Sp are marked in Figure 4.1.

The approach that we have outlined partitions the functions fj,fl% into six
groups. This is the smallest number of groups as long as one of the variables is
shared by six functions; in our case, all the variables appear in six functions. A
standard red-black partitioning into four groups is therefore not possible. Of course,
if we reformulate the optimization problem so that a function is associated with each
square, then a standard red-black partitioning would be possible.

Table 4.1 shows the improvements that can be obtained on the CRAY-2 with the
above partitioning. We used n = 40, 000 variables on all problems and noted the time
t; to evaluate the standard f and Vf, and the time ¢, to evaluate the partitioned f
and Vf.

TABLE 4.1
Function evaluation times (seconds) on the CRAY-2 for n = 40,000

‘Problem‘ te ‘ tp ‘

MSA 0.31 | 0.017

SSC 0.66 | 0.017

oDC 0.34 | 0.036

The increase in speed obtained by partitioning varies with each problem. For
the MSA problem there is a speedup of 18, which is what we expect when comparing
vectorized code with scalar code on the CRAY-2. The SSC problem shows a speedup of
39. This improvement is due not only to the partitioning, but also to the replacement

of

15 = S {exp(vij) + exp(viz;) + exp(vi 1)}

8 B. M. AVERICK AND J. J. MORE
on all interior elements by
+
Hi; = exp(vi,j).-

Since each variable is a member of six elements, this modification does not change the
SSC function (boundary values are handled separately). The ODC problem showed
a speedup of 9. In this case vectorization of the ¥ function computation required a
modification to the original code that increased the flop count.

The partitioning approach can be extended to general partially separable func-
tions, that is, functions of the form

) =S fw),

where each fi depends on only a few of the variables v;. For general partially separable
functions, the partitioning problem can be formulated as a graph coloring problem.
For details and references, see Coleman and Moré [5]. Other references in this area
include Coleman, Garbow, and Moré [4] on software for the partition problem, Gold-
farb and Toint [7] on the partition problem for matrices that arise from finite element
approximations, Jones and Plassmann [10] on the use of partitioning techniques for
the iterative solution of sparse linear systems, and Averick el al. [2] on computing
large sparse Jacobian matrices using automatic differentiation.

5. Performance evaluation on vector architectures. We have shown that
partitioning techniques can be used to improve the performance of the function and
gradient evaluation algorithms on vector architectures. We now examine the perfor-
mance of the VMLM code on the SSC problem on the basis of two measures: the time
per iteration (;zer) and the Mflop rate.

We already noted in Section 3 that the VMLM code requires (8m + 12)n oper-
ations per iteration, in addition to the flops needed to evaluate f(zy) and V f(zy).
For the SSC problem, the evaluation of f(zj) and V() requires 38n operations
and n evaluations of the exponential. The cost of evaluating the exponential func-
tion was determined experimentally by computing the times required to evaluate the
SSC problem when a multiplication replaces the exponential function. We found that
for our compiler options during these tests, an exponential evaluation costs (approx-
imately) 20 multiplications on the IBM RS6000, 40 multiplications on the CRAY-2,
and 130 multiplications on the DELTA.

An implementation of the exponential function is likely to require at least 30
floating point operations. See, for example, the implementation described by Cody
and Waite [3]. Thus, the number of operations on the CRAY-2 look about right,
while the number for the IBM probably reflects an extremely careful implementation.
The DELTA is an experimental architecture, so the implementation of the intrinsic
functions may not have received sufficient attention.

Table 5.1 presents the time per iteration (¢;;.,) and the Mflop rate on the IBM
RS6000 and the CRAY-2. We have included the IBM RS6000 because these results
are indicative of the performance that can be obtained with minimal effort on a high-
performance workstation. Note, in particular, that the IBM results do not require
partitioning of the function and gradient evaluation algorithms. We do not present
results for the problem with n = 2.56 10° because it is too large for the 16 MW
memory.

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 9

TaABLE 5.1
Performance evaluation of the VMLM code

IBM RS6000/370 CRAY-2
n titer Mflop titer | Mflop
10,000 0.06 17.5 0.01 137
40,000 0.26 17.7 0.04 141
160,000 1.03 17.9 0.15 144
640,000 4.10 18.1 0.62 143
2,560,000 cee ce 2.36 145

The performance results in Table 5.1 show that there is a slight increase in speed
with increasing vector length and that the time per iteration scales linearly with n.
The overall Mflop rates are quite satisfactory. For example, Dongarra and van der
Vorst [6] mention that an unpreconditioned conjugate gradient iteration on a sytem of
linear equations with n = 10° variables achieves 21.1 Mflops on an IBM RS6000/550
and 149 Mflops on the CRAY-2.

6. Evaluating functions and gradients on distributed memory architec-
tures. Evaluation of the function and the gradient of a partially separable function
on shared memory architectures has been discussed by Moré [14]. The issues are
more complicated on distributed memory architectures; the discussion below follows
the work of Jones and Plassmann [11].

The first issue that must be considered is that the work must be distributed
among the processors so as to obtain good load balancing. In our test problems this
amounts to distributing the evaluations of Z»LJ» and gj evenly among the processors.
Second, the variables need to be distributed among the processors so that the ratio
of computation to communication remains high. That is, if a processor is responsible
for computing ffj, it should own as many variables required by fZLJ as possible.

Since the test problems are grid problems and the DELTA is a mesh connected
machine, the distribution of variables is fairly straightforward. We simply lay a grid
of processors over the rectangular finite element mesh, as shown in Figure 6.1, dis-
tributing the grid points as evenly as possible. In this figure each processor owns six
variables.

Any element that has all of its vertices within one processor is an tnterior element;
those elements with vertices in two or more processors are shared elements. Any
element that has a vertex that lies on the boundary of the grid i1s a boundary element.
It is possible to be a shared-boundary element, but these elements are to be considered
shared.

Each processor is responsible for computing the function in all of its interior
elements and in those shared elements for which the processor contains the right
angle vertex. Processors that contain a vertex of a boundary element compute that
boundary elements contributions to the function. Lastly, the function contributions
of the bottom left and top right elements are computed by the appropriate processor.
After each processor has computed its contribution to the function, the results are
added to get the global function value.

Evaluating the gradient is less complicated. Each processor is responsible for
computing each of the gradient components corresponding to the variables that lie

10 B. M. AVERICK AND J. J. MORE

Fia. 6.1. Partitioning variables into processors

within the processor. This means that a processor will have to compute the gradient
contributions of some shared elements even though the processor does not compute
the corresponding function.

Figure 6.2 shows a typical processor with six variables. This processor is respon-
sible for computing the function for all the elements shown. The gridpoints labeled
G, frequently called ghostpoints, are needed to compute the contribution to the func-
tion and the component of the gradient for the variables owned by the processor.
The ghostpoints must be obtained from the processors directly above, directly below,
immediately to the right, and immediately to the left. These data must be commu-
nicated to the processor before it can compute the functions or gradient components
that depend on the ghostpoints. Communication is handled by the Chameleon par-
allel programming tools developed by Gropp and Smith [8]. These tools can be used
to develop code that is portable to a variety of computing environments.

G G G G G
G G
G G
G G G G G

Fia. 6.2. Processor with ghostpoints

Let m, and m,, be the number of grid points in the respective coordinate directions
owned by the processors so that nvp = mg,m, is the number of variables stored in
each processor. We store the vector of variables & as an (my +2) X (mg +2) array and
the gradient as an my X m, array. The extra rows and columns in z allow space for
the ghostpoints. This strategy worked well for our problems but may be impractical
in terms of storage for three-dimensional problems or for elements of high order.

For a fixed problem size the computing time for evaluating the SSC function and
gradient depends on the number of variables nvp stored in each processor. Figure 6.3
shows the time for nvp set to 5,000, 10,000, and 20,000. The computing times de-
crease as nvp decreases since more processors are being used; however, it is not always
possible or convenient to use all the DELTA processors, so the results for nvp = 20, 000

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 11

0.4
0.35¢ B
P=32
p=2 P=8 s
0.3 x 1
X
20257 * NVP =5,000 1
=]
§ o NVP =10,000
& 02 X NVP = 20,000 1
[}
£
T 0.5} 1
Qo (o] (o]
p=1 P=4 P=16 P=64
0.1f 1
* * * *
005 P=2 P=8 P=32 P=128 |
0 ‘
10°* 10° 10°

Number of variables

Fia. 6.3. Evaluation of the SSC function on the DELTA

are of interest although they do not lead to the fastest computing times.

Figure 6.3 shows that the function and gradient evaluation algorithm is scalable
in the sense that as the number of variables increases and the number of processors
increases, the computing time remains reasonably constant. Furthermore, the unifor-
mity with which the plots are spaced indicate that the communication time needed
to do the evaluation is almost negligible, even for small values of nvp.

7. Performance evaluation on parallel architectures. We have noted that
the evaluation of the function and gradient on a distributed memory architecture
requires that the vector & of variables and the gradient vector ¢ be distributed among
the processors. Implementation of the VMLM code also requires that the 2m vectors
y; and s; be distributed among the processors. All other information is local to
each processor. With this strategy processors are required to store vectors of length
proportional to nvp.

Global communication is required to compute the quantities ¢”'s and y’'s. The
line search needs ¢g”'s, and y”s is used to determine the scaling parameter. Global
communication is also needed to compute s! ¢ and y! ¢ during the computation of the
direction d (see the algorithm in Section 3). Thus, each iteration of the VMLM code
requires 2(m + 1) global dot products. These computations are performed with the
Chameleon package of Gropp and Smith [8].

The line search routine requires very few flops except for function and gradient
evaluations, which we have already shown to be amenable to parallel implementation.
As a result each processor performs exactly the same line search in our VMLM im-
plementation, and parallelism is obtained through the parallelism in the function and
gradient evaluations.

Table 7.1 presents the performance data for the VMLM code with nvp = 5000.
The time per iteration (#;;.r) is virtually constant, indicating scalability of perfor-
mance. There is an increase in the time per iteration for the largest problem; it
is generally believed that at the time these results were obtained, the DELTA had
a faulty communication channel. Results were also obtained for nvp = 10,000 and
nvp = 20,000. The results scale almost linearly with those shown in Table 7.1. For

12 B. M. AVERICK AND J. J. MORE

TaBLE 7.1
Performance evaluation of VMLM on the DELTA (nvp = 5,000)

n ‘ p ‘ titer | Mflop/p ‘ Mflops ‘
10,000 2 | 0.12 9.3 18
40,000 8 | 013 8.8 71
160,000 | 32 | 0.13 8.3 267
640,000 | 128 | 0.14 8.1 1044

2,560,000 | 512 | 0.18 6.3 3233

example, the average time per iteration increases from 0.14 for nvp = 5,000 to 0.26
for nvp = 10,000, and to 0.50 for nvp = 20, 000.

Figure 7.1 compares the results in Table 7.1 with those presented in Table 5.1 for
the IBM RS6000 and the CRAY-2. We show DELTA results for nvp = 5,000 and
nvp = 10,000. Initially both sequential machines are faster than the DELTA because
of processor speed, but this situation is reversed as the problem size increases and the
DELTA adds processors. First consider the case when nvp = 5,000. The DELTA (4
processors) becomes faster than the IBM RS6000 at n = 20,000, while the DELTA
(28 processors) becomes faster than the CRAY-2 at n = 140, 000. The crossing point
for other values of nvp can be determined from this data because computing times
scale linearly with n and nvp. For example, with nvp = 10,000, the DELTA (28
processors) becomes faster than the CRAY-2 at n = 280, 000.

10
0 IBM RS600/370 o
*
* CRAY-2
10°F X Intel DELTA o B
fg *
2 NVP = 10,000
g «
% Q X X
3 x
(= x £3 X
107 NVP=5000 -
*
10 ! !
10* 10° 10° 10’

Number of variables

Fia. 7.1. Time (seconds) per iteration of VMLM as a function of n

8. Concluding remarks. The performance issues that we have raised apply
to truncated Newton methods because for these methods the cost of evaluating the
function and gradient is likely to dominate the computing time. Nash and Nodedal
[17] mention that a typical cost of the TN code of Nash [16] is 325n flops per iteration.
This cost 1s certainly higher than for limited memory variable metric methods, but we
still expect it to be a small fraction of the total computing cost for many applications.
The cost of the truncated Newton method of Schlick and Fogelson [19]) depends on

OPTIMIZATION PROBLEMS ON PARALLEL ARCHITECTURES 13

TABLE 8.1
Evaluation of V2 f(x)v (seconds) for the SSC problem on the CRAY-2

L~ e [o]
10,000 | .18 | .004
40,000 | .70 | .015

160,000 2.79 | .061
640,000 | 11.20 | .244

the preconditioner, so the situation is less clear with this code.

Although we have concentrated on issues involving on the evaluation of the func-
tion and gradient, many of these issues also apply to the evaluation of the Hessian-
vector product V?f(z)v. This product is often required by, for example, truncated
Newton methods. In most codes, this product is approximated by differences of gra-
dient values, but it is certainly possible and desirable to use the actual Hessian-vector
product, since this eliminates the dependence of the code on a difference parameter.

The MINPACK-2 test problems include code for the evaluation of VZ f(z)v. These
codes raise the same issues as the gradient evaluation codes. In particular, on vector
architectures these codes have the same vector dependencies as the gradient evaluation
codes. These dependencies can be eliminated by the same partitioning techniques
discussed in Section 4. Table 8.1 shows the improvements that can be obtained with
these partitioning techniques. We used the SSC problem with n = 40,000 variables
and noted the time ¢, to evaluate the standard V?f(x)v, and the time ¢, to evaluate
the partitioned VZf(z)v.

Note that the computing time scales linearly with n. Moreover, note that Ta-
ble 4.1 shows that the cost of evaluating the function and the gradient is about the
same as the cost of evaluating the Hessian-vector product. This is typical for our
applications, and should hold in all cases. For a discussion of this point, in connection
with automatic differentiation, see Iri [9].

As a final remark we note that the evaluation of Hessian-vector products on
distributed memory architectures can also be done with the techniques discussed in
Section 6, and that results were obtained for the SSC problem that were similar to
those shown in Figure 6.3.

Acknowledgments. We thank Bill Gropp, Mark Jones, Barry Smith, and Paul
Plassmann for sharing their parallel programming expertise, and Peter Tang for his
observations on algorithms for evaluating intrinsic functions. Michelle Hribar deserves
a special thanks for providing much of the initial programming for this project.

REFERENCES

[1] B. M. AvERICK, R. G. CARTER, J. J. MORE, AND G.-L. XUE, The MINPACK-2 test problem
collection, Preprint MCS-P153-0692, Argonne National Laboratory, Argonne, Illinois, 1992.

[2] B. M. AvErIck, J. J. MoRrE, C. H. BiscHoF, A. CARLE, AND A. GRIEWANK, Computing
large sparse Jacobian matrices using automatic differentiation, Preprint MCS-P348-0193,
Argonne National Laboratory, Argonne, Illinois, 1993.

[3] W. J. Copy aNnD W. WAITE, Software Manual for the Elementary Functions, Prentice Hall,
1980.

[4] T. F. CoLEMAN, B. S. GarRBOwW, AND J. J. MORE, Software for estimating sparse Jacobian
matrices, ACM Trans. Math. Software, 10 (1984), pp. 329-345.

10]
(11]
(12]
(13]

(14]

15]
(16]

(17]

18]

(19]

(20]

T

J.

D

B. M. AVERICK AND J. J. MORE

. F. CoLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-209.

J. DONGARRA AND H. A. VAN DER VORST, Performance of various computers using stan-
dard sparse linear equation solving technigues, in Computer Benchmarks, J. J. Dongarra
and H. A. van der Vorst, eds., North-Holland, 1994, pp. 177-191.

. GOLDFARB AND P. L. ToOINT, Optimal estimation of Jacobian and Hessian matrices that
arise in finite difference calculations, Math. Comp., 43 (1984), pp. 69-88.

W. GROPP AND B. SMITH, Users manual for the Chameleon parallel programming tools, Report

ANL-93/23, Argonne National Laboratory, Argonne, Illinois, 1993.

M. Ir1, History of automatic differentiation and rounding error estimation, in Automatic

Differentiation of Algorithms, A. Griewank and G. F. Corliss, eds., Society for Industrial
and Applied Mathematics, 1992, pp. 3-16.

M. T. JonEs AND P. E. PLASSMANN, Scalable iterative solution of sparse linear systems,

o

T

X.

Preprint MCS-P277-1191, Argonne National Laboratory, Argonne, Illinois, 1991.

, Computation of equilibrium wvortex structures for type-1I superconductors, Internat. J.
Supercomputing Applications, 7 (1993). To appear.

. C. Liu AND J. NOCEDAL, On the limited memory BFGS method for large scale optimization,
Math. Programming, 45 (1989), pp. 503-528.

. S. MAIER, Large-scale minimization on the CM-200, Optimization Methods and Software,
1 (1992), pp. 55-69.

. J. MORE, On the performance of algorithms for large-scale bound constrained problems, in

Large-Scale Numerical Optimization, T. F. Coleman and Y. Li, eds., Society for Industrial
and Applied Mathematics, 1991, pp. 31-45.

J. MorE anND D. J. THUENTE, Line search algorithms with guaranteed sufficient decrease,
Preprint MCS-P330-1092, Argonne National Laboratory, Argonne, Illinois, 1992.

. G. NasH, Preconditioning of truncated Newton methods, SIAM J. Sci. Statist. Comput., 6

(1985), pp. 599-616.

. G. NasH AND J. NOCEDAL, A numerical study of the limited memory BFGS method and the

truncated Newton method for large scale optimization, SIAM J. Optimization, 1 (1991),
pp. 358-372.

. NocEDAL, The performance of several algorithms for large-scale unconstrained optimiza-

tion, in Large-Scale Numerical Optimization, T. F. Coleman and Y. Li, eds., Society for
Industrial and Applied Mathematics, 1991, pp. 138-151.
. ScHLICK AND A. FociELsON, TNPACK - A truncated Newton minimization package for
large-scale problems: I. Algorithms and usage, ACM Trans. Math. Software, 18 (1992),
pp. 46-70.
Zou, I. M. NavoN, M. BErGERr, K. H. Puua, T. ScHLICcK, AND F. X. LE DIMET,
Numerical experience with limited-memory quasi-Newton and truncated Newton methods,
SIAM J. Optimization, 3 (1993), pp. 582—608.

